Introduction to Bayesian models

Murray Logan

12/02/2013

Frequentist

Frequentist

Frequentist vs Bayesian

FrequentistBayesian
Observed dataOne possibleFixed, true
ParametersFixed, trueRandom, distribution
InferencesDataParameters
ProbabilityLong-run frequency
P(D|H)
Degree of belief
P(H|D)

Bayesian

Bayes' rule

\begin{align*} P(H|D) &= \frac{P(D|H) \times P(H)}{P(D)}\\ \mathsf{posterior\\belief\\(probability)} &= \frac{likelihood \times \mathsf{prior~probability}}{\mathsf{normalizing~constant}} \end{align*}

The normalizing constant is required for probability - turn a frequency distribution into a probability distribution

Bayesian

Advantages

Bayesian

Disadvantages

MCMC sampling

Marchov Chain Monte Carlo sampling

MCMC sampling

Marchov Chain Monte Carlo sampling

MCMC sampling

Marchov Chain Monte Carlo sampling

MCMC sampling

Marchov Chain Monte Carlo sampling

MCMC sampling

Marchov Chain Monte Carlo sampling

MCMC sampling

Marchov Chain Monte Carlo sampling

MCMC sampling

Marchov Chain Monte Carlo sampling

Trace plots

Autocorrelation

Summary stats on non-independent values are biased
Thinning factor = 1

Autocorrelation

Summary stats on non-independent values are biased
Thinning factor = 10

Autocorrelation

Summary stats on non-independent values are biased
Thinning factor = 15, n=10,000

Plots of distributions

Freq vs Bayes

plot of chunk PopA
plot of chunk PopB
plot of chunk PopC

n: 10
Slope: -0.0792
t: -2.3399
p: 0.0474

n: 10
Slope: -7.8107
t: -2.1922
p: 0.0597

n: 100
Slope: -10.1985
t: -7.4121
p: 0

JAGS

JAGS

JAGS

JAGS

JAGS

JAGS

JAGS

JAGS

JAGS