

Australian Government

-1-

PERTH

1

5

Workshop 11.2a: Generalized Linear Mixed Effects Models (GLMM)

Murray Logan February 7, 2017

Table of contents

- 1 Generalized Linear Mixed Effects Models
- 2 Worked Examples

1. Generalized Linear Mixed Effects Models

1.1. Parameter Estimation

Im -> LME (integrate likelihood across all unobserved levels random effects)

1.2. Parameter Estimation

Im -> LME (integrate likelihood across all unobserved levels random effects)

glm —-....-> GLMM Not so easy - need to approximate

1.3. Parameter Estimation

- Penalized quasi-likelihood
- Laplace approximation
- Gauss-Hermite quadrature

1.4. Penalized quasi-likelihood (PQL)

1.4.1. Iterative (re)weighting

- LMM to estimate vcov structure
- fixed effects estimated by fitting GLM (incorp vcov)
- refit LMM to re-estimate vcov
- cycle

1.5. Penalized quasi-likelihood (PQL)

1.5.1. Advantages

- relatively simple
- leverage variance-covariance structures for heterogeneity and dependency structures

Darwin address: PO Box No 41775, Casuarina NT 0811 Tel: (08) 8920 9240 Fax: (08) 8920 9222 www.aims.gov.au

AUSTRALIAN INSTITUTE OF MARINE SCIENCE

-2-

PERTH

Australian Government

1.5.2. Disadvantages

- \bullet biased when expected values less ${<}5$
- approximates likelihood (no AIC or LTR)

1.6. Laplace approximation

Second-order Taylor series expansion - to approximate likelihood at unobserved levels of random effects

1.7. Laplace approximation

Second-order Taylor series expansion - to approximate likelihood at unobserved levels of random effects

1.7.1. Advantages

• more accurate

1.8. Laplace approximation

Second-order Taylor series expansion - to approximate likelihood at unobserved levels of random effects

1.8.1. Advantages

• more accurate

1.8.2. Disadvantages

- slower
- no way to incorporate vcov

1.9. Gauss-Hermite quadrature (GHQ)

- approximates value of integrals at specific points (quadratures)
- points (and weights) selected by optimizer

1.10. Gauss-Hermite quadrature (GHQ)

- approximates value of integrals at specific points (quadratures)
- points (and weights) selected by optimizer

1.10.1. Advantages

• even more accurate

1.11. Gauss-Hermite quadrature (GHQ)

- approximates value of integrals at specific points (quadratures)
- points (and weights) selected by optimizer

1.11.1. Advantages

• even more accurate

1.11.2. Disadvantages

- even slower
- no way to incorporate vcov

Townsville address: PMB No 3, Townsville MC, Qld 4810 Tel: (07) 4753 4444 Fax: (07) 4772 5852 Darwin address: PO Box No 41775, Casuarina NT 0811 Tel: (08) 8920 9240 Fax: (08) 8920 9222 www.aims.gov.au

Australian Government

1.12. Markov Chain Monte Carlo (MCMC)

• recreate likelihood by sampling proportionally to likelihood

1.13. Markov Chain Monte Carlo (MCMC)

• recreate likelihood by sampling proportionally to likelihood

1.13.1. Advantages

- very accurate (not an approximation)
- very robust

1.14. Markov Chain Monte Carlo (MCMC)

• recreate likelihood by sampling proportionally to likelihood

1.14.1. Advantages

- very accurate (not an approximation)
- very robust

1.14.2. Disadvantages

- very slow
- currently complex

1.15. Inference (hypothesis) testing

1.15.1. GLMM

Depends on:

- Estimation engine (PQL, Laplace, GHQ)
- Overdispersed
- Fixed or random factors

1.16. Inference (hypothesis) testing

Approximation	Characteristics	Associated inference	R Function
Penalized Quasi- likelihood (PQL)	Fast and simple, accommodates heterogene- ity and dependency structures, biased for small samples	Wald tests only	glmmPQL (MASS)
Laplace	More accurate (less biased), slower, does not accommodate heterogeneity and dependency structures	LRT	glmer (Ime4), glmmadmb (gImmADMB)
Gauss-Hermite quadrature	Evan more accurate (less biased), slower, does not accommodate heterogeneity and dependency structures, cant handle more than 1 random effect	LRT	glmer (Ime4)?? - does not seem to work
Markov Chain Monte Carlo (MCMC)	Bayesian, very flexible and accurate, yet very slow and more complex	Bayesian credibility intervals, Bayes factors	Numerous (see Tuto- rial 9.2b)

Townsville address: PMB No 3, Townsville MC, Qld 4810 Tel: (07) 4753 4444 Fax: (07) 4772 5852 Darwin address: PO Box No 41775, Casuarina NT 0811 Tel: (08) 8920 9240 Fax: (08) 8920 9222 www.aims.gov.au

TOWNSVILLE

DARWIN

Australian Government

Feature	glmmQPL (MASS)	glmer (Ime4)	glmmadmb (gimmADMB)	мсмс
Varoamce amd covariance structures	Yes	-	not yet	Yes
Overdispersed (Quasi) families	Yes	limited	some	-
Mixture families	limited	limited	limited	Yes
Zero-inflation	-	-	Yes	Yes
Residual degrees of freedom	Between-within	_*	-	NA
Parameter tests	Wald t	Wald Z	Wald Z	UI
Marginal tests (fixed effects)	Wald F, χ^2	Wald F, χ^2	Wald F, χ^2	UI
Marginal tests (random effects)	Wald F, χ^2	LRT	LRT	UI
Information criterion	-	AIC	AIC	AIC, WAIC

1.17. Inference (hypothesis) testing

1.18. Inference (hypothesis) testing

Overdispersed	Model	Inference			
Random effects					
Yes or no	<pre>glmer() or glmmadmb()</pre>	LRT (ML)			
Fixed effects					
No	<pre>glmer() or glmmadmb()</pre>	Wald Z or χ^2			
Yes	glmer((1 Obs))	Wald t or F			
Clumpiness	<pre>glmer(, family='negative.binomial')</pre>	Wald t or F			
	<pre>glmmamd(, family='nbinom')</pre>	Wald t or F			
Zero-inflation	glmmadmb(, zeroInflated=TRUE)	Wald t or F			

1.19. Additional assumptions

- dispersion
- (multi)collinearity
- design balance and Type III (marginal) SS
- heteroscadacity
- spatial/temporal autocorrelation

Townsville address: PMB No 3, Townsville MC, Qld 4810 Tel: (07) 4753 4444 Fax: (07) 4772 5852 Darwin address: PO Box No 41775, Casuarina NT 0811 Tel: (08) 8920 9240 Fax: (08) 8920 9222 www.aims.gov.au **Perth address:** The UWA Oceans Institute (M096) 35 Stirling Highway, Crawley WA 6009 Tel: (08) 6369 4000 Fax: (08) 6488 4585

PERTH

AUSTRALIAN INSTITUTE OF MARINE SCIENCE

		-5-
TOWNSVILLE	DARWIN	PERTH

Australian Government

2. Worked Examples

2.1. Worked Examples

 $log(y_{ij}) = \gamma_{Site_i} + \beta_0 + \beta_1 \operatorname{Treat}_i + \varepsilon_{ij} \qquad \qquad \varepsilon \sim \operatorname{Pois}(\lambda)$ where $\sum \gamma = 0$

Townsville address: PMB No 3, Townsville MC, Qld 4810 Tel: (07) 4753 4444 Fax: (07) 4772 5852 Darwin address: PO Box No 41775, Casuarina NT 0811 Tel: (08) 8920 9240 Fax: (08) 8920 9222 www.aims.gov.au