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Section 1

Frequentist vs
Bayesian



Frequentist

• P(D�H)

• long-run frequency

• simple analytical methods to solve roots

• conclusions pertain to data, not

parameters or hypotheses

• compared to theoretical distribution when

NULL is true

• probability of obtaining observed data or

MORE EXTREME data



Frequentist
• P-value

◦ probabulity of rejecting NULL

◦ NOT a measure of the magnitude of an

effect or degree of significance!

◦ measure of whether the sample size is

large enough

• 95% CI

◦ NOT about the parameter it is about the

interval

◦ does not tell you the range of values

likely to contain the true mean



Frequentist vs Bayesian

-------------------------------------------------
Frequentist Bayesian

-------------- ------------ ------------
Obs. data One possible Fixed, true

Parameters Fixed, true Random,
distribution

Inferences Data Parameters

Probability Long-run frequency Degree of belief
$P(D|H)$ $P(H|D)$

-------------------------------------------------



Frequentist vs Bayesian
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n: 10 Slope: -0.1022 t: -2.3252 p: 0.0485

n: 10 Slope: -10.2318 t: -2.2115 p: 0.0579

n: 100 Slope: -10.4713 t: -6.6457 p: 1.7101362 � 10-9



Frequentist vs Bayesian
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Population A Population B

Percentage

change

0.46 45.46

Prob. �5% decline 0 0.86



Section 2

Bayesian
Statistics



Bayesian

Bayes rule

P(H | D) = P(D | H)× P(H)

P(D)

posterior

belief

(probability) =
likelihood× prior probability

normalizing constant



Bayesian

Bayes rule

P(H | D) = P(D | H)× P(H)

P(D)

posterior

belief

(probability) =
likelihood× prior probability

normalizing constant

The normalizing constant is required for probability - turn a

frequency distribution into a probability distribution



Estimation: OLS



Estimation: Likelihood

P(D | H)



Bayesian

• conclusions pertain to hypotheses

• computationally robust (sample

size,balance,collinearity)

• inferential flexibility - derive any

number of inferences



Bayesian

• subjectivity?

• intractable

P(H | D) = P(D | H)× P(H)

P(D)

P(D)- probability of data from all

possible hypotheses



MCMC sampling
Marchov Chain Monte Carlo sampling

• draw samples proportional to likelihood

two parameters α and β

infinitely vague priors - posterior likelihood only

likelihood multivariate normal



MCMC sampling
Marchov Chain Monte Carlo sampling

• draw samples proportional to likelihood



MCMC sampling
Marchov Chain Monte Carlo sampling

• draw samples proportional to likelihood



MCMC sampling
Marchov Chain Monte Carlo sampling

• chain of samples



MCMC sampling
Marchov Chain Monte Carlo sampling

• 1000 samples



MCMC sampling
Marchov Chain Monte Carlo sampling

• 10,000 samples



MCMC sampling
Marchov Chain Monte Carlo sampling

• Aim: samples reflect posterior frequency

distribution

• samples used to construct posterior prob.

dist.

• the sharper the multidimensional

�features� - more samples

• chain should have traversed entire

posterior

• inital location should not influence



MCMC diagnostics
Trace plots



MCMC diagnostics
Autocorrelation

• Summary stats on non-independent values

are biased

• Thinning factor = 1



MCMC diagnostics
Autocorrelation

• Summary stats on non-independent values

are biased

• Thinning factor = 10



MCMC diagnostics
Autocorrelation

• Summary stats on non-independent values

are biased

• Thinning factor = 10, n=10,000



MCMC diagnostics
Plot of Distributions



Sampler types

Metropolis-Hastings

http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/



Sampler types

Gibbs



Sampler types

NUTS



Sampling

• thinning

• burning (warmup)

• chains



Bayesian software (for R)

• MCMCpack

• winbugs (R2winbugs)

• jags (R2jags)

• stan (rstan, brms)



BRMS
Extractor Description

residuals() Residuals

fitted() Predicted values

predict() Predict new responses

coef() Extract model coefficients

plot() Diagnostic plots

stanplot(,type=) More diagnostic plots

marginal_effects() Partial effects

logLik() Extract log-likelihood

LOO() and WAIC() Calculate WAIC and LOO

influence.measures() Leverage, Cook�s D

summary() Model output

stancode() Model passed to stan

standata() Data list passed to stan



Section 3

Worked
Examples



Worked Examples
> fert <- read.csv('../data/fertilizer.csv', strip.white=T)
> fert

FERTILIZER YIELD
1 25 84
2 50 80
3 75 90
4 100 154
5 125 148
6 150 169
7 175 206
8 200 244
9 225 212
10 250 248

> head(fert)

FERTILIZER YIELD
1 25 84
2 50 80
3 75 90
4 100 154
5 125 148
6 150 169

> summary(fert)

FERTILIZER YIELD
Min. : 25.00 Min. : 80.0
1st Qu.: 81.25 1st Qu.:104.5
Median :137.50 Median :161.5
Mean :137.50 Mean :163.5
3rd Qu.:193.75 3rd Qu.:210.5
Max. :250.00 Max. :248.0

> str(fert)

'data.frame': 10 obs. of 2 variables:
$ FERTILIZER: int 25 50 75 100 125 150 175 200 225 250
$ YIELD : int 84 80 90 154 148 169 206 244 212 248



Worked Examples
Question: is there a relationship between fertilizer concentration and

grass yield?

Linear model:

Frequentist

yi = β0 + β1xi + εi ε ∼ N (0,σ2)

Bayesian

yi ∼ N(ηi,σ2)

ηi = β0 + β1xi

β0 ∼ N(0, 1000)
β1 ∼ N(0, 1000)
σ2 ∼ cauchy(0, 4)
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