Workshop 7.2b: Introduction to Bayesian models Murray Logan 07 Feb 2017

Frequentist

• P(D?H)

-0

-0

- long-run frequency
- simple analytical methods to solve roots
- conclusions pertain to data, not

parameters or hypotheses

- compared to theoretical distribution when NULL is true
- probability of obtaining observed data or MORE EXTREME data

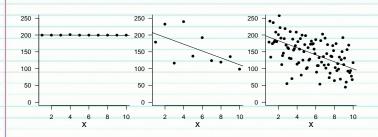
Frequentist

• P-value

- probabulity of rejecting NULL
- \circ NOT a measure of the magnitude of an
 - effect or degree of significance!
- \circ measure of whether the sample size is
 - large enough
- 95% CI
 - NOT about the parameter it is about the
 - interval
 - does not tell you the range of values

Frequentist vs Bayesian				
	Frequentist	Bayesian		
Obs. data	One possible	Fixed, true		
Parameters	Fixed, true	Random, distribution		
Inferences	Data	Parameters		
Probability	Long-run frequency \$P(D H)\$	Degree of belief \$P(H D)\$ 		

Frequentist vs Bayesian



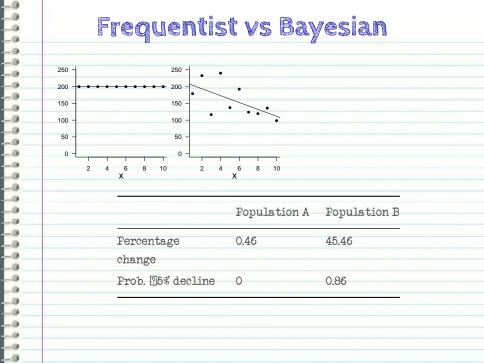
n: 10 Slope: -0.1022 t: -2.3252 p: 0.0485

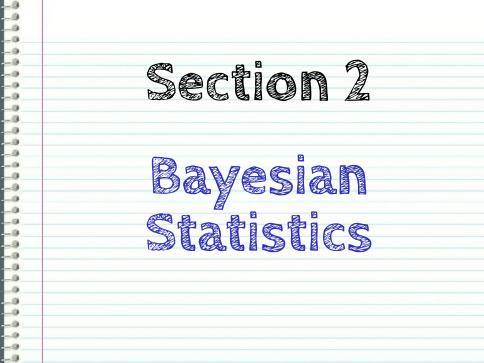
n: 10 Slope: -10.2318 t: -2.2115 p: 0.0579

-0

-0

n: 100 Slope: -10.4713 t: -6.6457 p: 1.7101362 🛙 10-9





BAYES RULE

-9

-0

$$\mathtt{P}(\mathtt{H} \mid \mathtt{D}) = \frac{\mathtt{P}(\mathtt{D} \mid \mathtt{H}) \times \mathtt{P}(\mathtt{H})}{\mathtt{P}(\mathtt{D})}$$

posterior

belief

 $(probability) = rac{likelihood \times prior probability}{}$

normalizing constant

BAYES RULE

-0

-0 -0 -0 -0

-9

-0

_0

-0 -0 -0

_0

-0

-0

_0 _0 _0

-9 -9 -9 -9

$$\mathtt{P}(\mathtt{H} \mid \mathtt{D}) = \frac{\mathtt{P}(\mathtt{D} \mid \mathtt{H}) \times \mathtt{P}(\mathtt{H})}{\mathtt{P}(\mathtt{D})}$$

posterior

belief

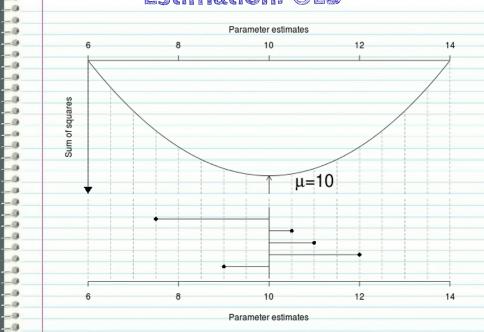
likelihood \times prior probability

normalizing constant

The normalizing constant is required for probability - turn a frequency distribution into a probability distribution

Estimation: OLS

-0

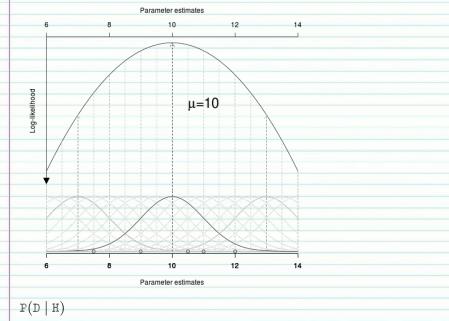


Estimation: Likelihood

-0

10

-0



- conclusions pertain to hypotheses
- computationally robust (sample

size, balance, collinearity)

• inferential flexibility - derive any

number of inferences

_0 _0 _0

-0 -0 -0

-0

• subjectivity?

intractable

-0 -0 -0 -0 -0

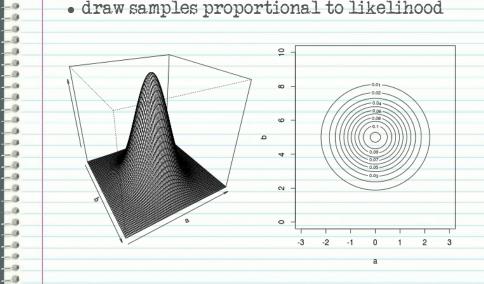
$$\mathbf{P}(\mathbf{H} \mid \mathbf{D}) = \frac{\mathbf{P}(\mathbf{D} \mid \mathbf{H}) \times \mathbf{P}(\mathbf{H})}{\mathbf{P}(\mathbf{D})}$$

P(D)-probability of data from all

possible hypotheses

Marchov Chain Monte Carlo sampling

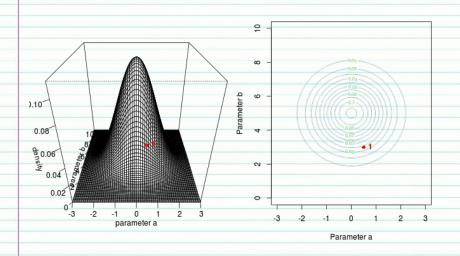
• draw samples proportional to likelihood



Marchov Chain Monte Carlo sampling

- A

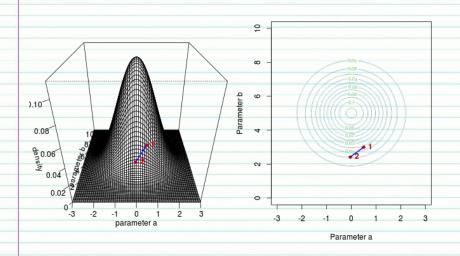
• draw samples proportional to likelihood

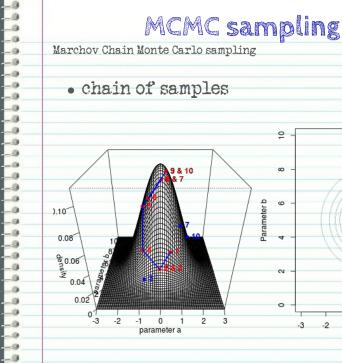


Marchov Chain Monte Carlo sampling

-0

• draw samples proportional to likelihood





Parameter a

-3

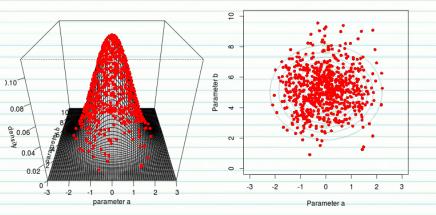
9 & 10 • 10

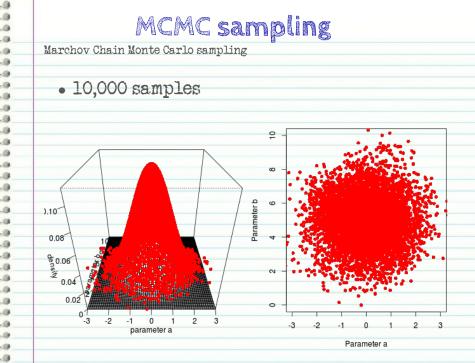
3

6 & 7 -

Marchov Chain Monte Carlo sampling

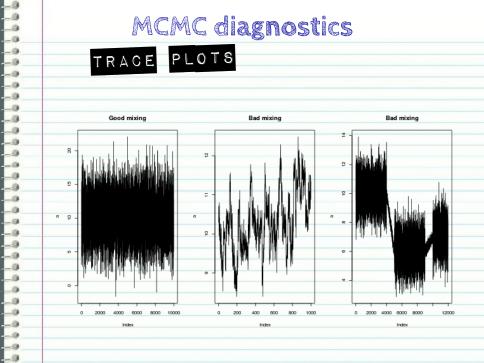
• 1000 samples





Marchov Chain Monte Carlo sampling

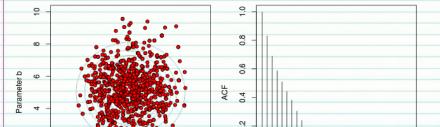
- Aim: samples reflect posterior frequency
 - distribution
- samples used to construct posterior prob. dist.
- the sharper the multidimensional
 Preatures more samples
- chain should have traversed entire posterior
- inital location should not influence



MCMC diagnostics

AUTOCORRELATION

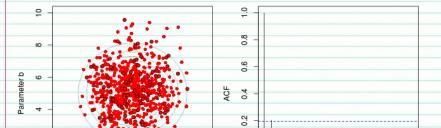
- Summary stats on non-independent values are biased
- Thinning factor = 1



MCMC diagnostics

AUTOCORRELATION

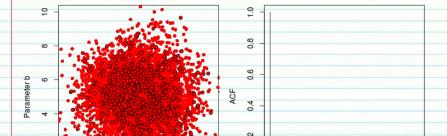
- Summary stats on non-independent values are biased
- Thinning factor = 10

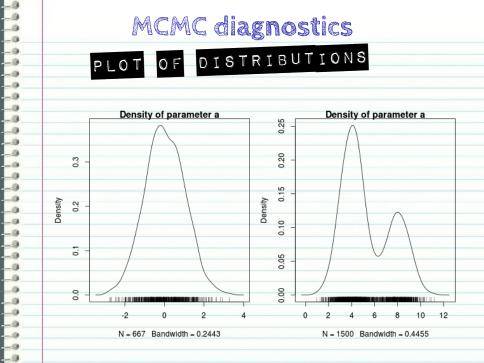


MCMC diagnostics

AUTOCORRELATION

- Summary stats on non-independent values are biased
- Thinning factor = 10, n=10,000





Sampler types
Metropolis-Hastings
http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/

-0 -0 -0

-9

-9						
_0		(****				
_0		29	Imple	er type	es	
-0						
-0						
-9						
-00	-					
-0						
-0						
_0						
-0						
-0-0						
-0						
_0						
-0						
_0 _0 _0	Gibbs					
_0						
-04						
-0						
-0						
-0 -0						
-						
- (3)						
-0						
-04						
174						
- 04						
-04						
_0	1					
100 mm						

-9						
_9 _9 _9 _9		e -		type:	~	
-0		5G	molei	TVIDE.	S	
-9	1				-	
-0						
-9						
-0						
- 00						
-9 -0 -0						
_0						
_0						
-0-0						
-0						
-0						
-9	2000					
-0 -0 -0	NUTS					
-0						
_00						
_0						
-0						
-0						
_0						
-0						
-04						
-0						
_0						
_0						
-0 -0 -0 -0 -0 -0 -0 -0						
-9						
-04						
-9-0						

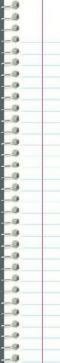
• thinning

_0

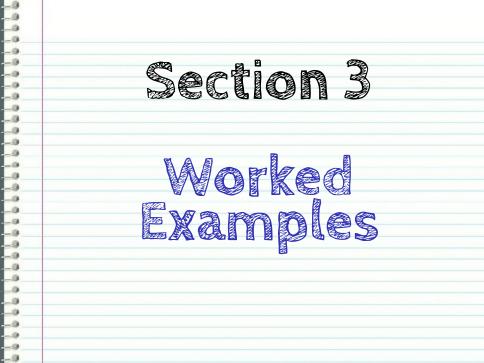
- burning (warmup)
- chains

Bayesian software (for R)

- MCMCpack
- winbugs (R2winbugs)
- jags (R2jags)
- stan (rstan, brms)



Extractor	Description		
residuals()	Residuals		
fitted()	Fredicted values		
<pre>predict()</pre>	Fredict new responses		
coef()	Extract model coefficients		
plot()	Diagnostic plots		
<pre>stanplot(,type=)</pre>	More diagnostic plots		
<pre>marginal_effects()</pre>	Partial effects		
logLik()	Extract log-likelihood		
LOO() and WAIC()	Calculate WAIC and LOO		
<pre>influence.measures()</pre>	Leverage, Cook2s D		
<pre>summary()</pre>	Model output		
<pre>stancode()</pre>	Model passed to stan		



Worked Examples

> fert <- read.csv('../data/fertilizer.csv', strip.white=T)
> fert

_				
	FI	ERTILIZER	VIELD	
	1	25	84	
	2	50	80	
	3	75	90	
	4	100	154	
	5	125	148	
	6	150	169	
	7	175	206	
	8	200	244	
	9	225	212	
_	10	250	248	
_	10	200	240	
	_			
	> ł	<pre>nead(fert)</pre>		
_		RTILIZER Y		
	1	25	84	
	2	50	80	
	3	75	90	
	4	100	154	
	5	125	148	
	6	150	169	
	U	100	100	

-0 _0 -0 -9 -9 -0 _0 _0 -0 _0 -0 -9

Worked Examples

Question: is there a relationship between fertilizer concentration and grass yield?

Linear model:

Frequentist

$$\mathbf{y}_{\mathrm{i}} = eta_{0} + eta_{1}\mathbf{x}_{\mathrm{i}} + arepsilon_{\mathrm{i}} \qquad arepsilon \sim \mathcal{N}(0,\sigma^{2})$$

Bayesian

$$\begin{split} \mathbf{y}_{i} &\sim \mathbb{N}(\eta_{i}, \sigma^{2}) \\ \eta_{i} &= \beta_{0} + \beta_{1} \mathbf{x}_{i} \\ \beta_{0} &\sim \mathbb{N}(0, 1000) \\ \beta_{1} &\sim \mathbb{N}(0, 1000) \\ \sigma^{2} &\sim \mathrm{cauchy}(0, 4) \end{split}$$